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Abstract 

We consider the problem of tracking naultiple maneuvering targets in the presence of clutter 

using switching multiple target motion models. A novel suboptimal filtering algorithm is devel- 

oped by applying the basic interacting multiple model (IMM) approach and joint probability 

data association technique. But unlike the standard single scan joint probabilistic data associa- 

tion (JPDA) approach, we exploit a multiscan joint probabilistic data association (Mscan-JPDA) 

approach to solve the data association problem. The algorithm is illustrated via a simulation 

example involving tracking of three maneuvering targets and a multiscan data window of length 
two. 

Keywords: Multitarget tracking; interacting multiple model (IMM) algorithm; multiscan joint 

probabilistic data association; state estimation. 

I    Introduction 

We consider the problem of tracking multiple maneuvering targets in presence of clutter using 

switching multiple target motion models. This class of problem has received considerable attention 

in the literature [2],[5],[6],[8],[10],[23]. The switching multiple model approach has been found to 

be very effective in modeling maneuvering targets [2]-[7],[9],[12]. In this approach various modes of 

target motion are represented by distinct kinematic models, and in a Bayesian framework, the target 

maneuvers are modeled by switching among these models controlled by a Markov chain. While 

tracking multiple targets in the presence of clutter, one has to solve the problem of measurement 

origin uncertainty, i.e. how to associate the data available at the sensor(s) with various targets or 
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clutter (false measurements). This problem of data association has already been considered and 

effectively solved in the Bayesian framevirork by using probabilistic data association (PDA) [1],[2],[5] 

in the case of a single target and joint probabilistic data association (JPDA) [2],[5],[10] in the case 

of multiple targets. The standard JPDA algorithm uses only a single (latest) scan data available at 

the sensors and the state of the target is updated by using a weighted sum of measurements which 

could have reasonably originated from the target under consideration. To use more information 

to solve the data association problem, the idea of using multiple scans of data (current and past 

scans) seems to have been initially proposed by Drummond [19]-[21]. Drummond describes some 

practical issues involved but does not discuss detailed problem formulation and technical issues for 

multiscan JPDA. Roecker [14] has extended Drummond's ideas where he has discussed problem 

formulation and solution in some detail. In a simulation example presented in [14] it has been 

shown that performance improvement in multiple target tracking can be achieved via multiscan 

JPDA as compared to single scan JPDA with most of the improvement gains achieved via a window 

size of 2 or 3 scans. 

In [14] only non-maneuvering targets (i.e. one model per target) have been considered. In this 

paper, we extend Roecker's approach to highly maneuvering targets where we allow multiple kine- 

matic motion models per target. A novel suboptimal filtering algorithm is developed by applying 

the basic interacting multiple model (IMM) approach and multiple scan joint probability data asso- 

ciation (Mscan-JPDA) technique. The algorithm is illustrated via a simulation example involving 

tracking of three maneuvering targets and multiscan data window of length two. 

The paper is organized as follows. The basic multiscan JPDA problem is explained in Sec. 

II followed by the presentation of the problem formulation in Sec. III. The proposed IMM-based 

multiscan JPDA algorithm is described in Sec. IV for the case of a sliding multiscan window of size 

2. A computer simulation example is presented in Sec. V. 

II    Multiscan Joint Probabilistic Data Association 

The first data association problem for target tracking was addressed by Bar-Shalom and Tse [1], 

in which they considered single target tracking in the presence of clutter. They developed the 

PDA, a method of data association, in which a probability weight for each measiu:ement-to-target 

association is computed and the state of the target is updated with a weighted sum of measm-e- 

ments. For multiple target tracking in presence of clutter, the JPDA algorithm has been developed 

[2],[5],[10]. Unlike PDA, JPDA computes the probabilistic weight for measurement-to-target as- 

sociation jointly across the set of all targets and clutter. Basically it defines all the feasible joint 

events for the known number of targets and clutter. Each feasible joint event is a unique event that 

represents the association of measurements to targets and clutter.  The probabiUty of each joint 



event is evaluated and the state of the target is updated with a weighted sum of joint events in 

which a measurement is associated with the target under consideration. 

A disadvantage of JPDA is that it uses only the data present in the current scan. The idea 

of multiscan JPDA (n-scan-back) stems from the fact that if more scans of data are used, more 

information would be available for data association and hence for computing the probabilistic 

weights. One can use all combinations of measurements beginning from the initial time to the 

present time, so that all information can be utilized to compute the probabilistic weights and hence 

to produce the best state update. This "optimal bayesian filter" has been considered previously 

[2],[5]. But practically it is not feasible to implement due to memory usage and exponentially 

increasing computations. Hence practically feasible n-scan-back or multiscan JPDA approach will 

be considered with a fixed size sliding window of n scans (current and past n — 1 scans). 

The basic idea of multiscan JPDA can be explained as follows. In a single scan JPDA we define 

single scan joint events.   Similarly in the multiscan scenario we define multiple-scan joint events 

as follows.   A marginal association event Oir{k) is said to be effective at time scan k when the 

validated measurement y}.' is associated with (i.e. originates from) target r {r = 0,1,--- ,N where 

r = 0 means that the measurement is caused by clutter). Assuming that there are no unresolved 

measurements, a joint association event &k is said to be effective when a set of marginal events 

{9ir{k)} holds true simultaneously. That is, 6fc = fji^i ^inik) where n is the index of the target 

to which measurement y^^*^ is associated in the event under consideration, (i = 1,2, • • ■, m). In the 

multiscan case with a scan window size L (L-scan-back) and ks = k — L + s, we define multiscan 

joint events 

L    m 

@kL=r\f]^irJk,) 
s=li=l 

where Oin, (kg) is the marginal association event that at time scan kg, I'th the validated measurement 

y^*' is associated with target ris- Let |{6A;}| denote the total number of feasible joint events in the 

single scan case. In the multiscan case we get total number of multiscan feasible joint events as 

|{0*;}| X |{0fc-i}| X • •• X |{0fc_£+i}|, derived from a Cartesian product of joint events present in 

all scans considered in the scan window. As one can see, even for a multiscan window of length two 

or three, the number of feasible multiscan joint events grow exponentially. Rocker [14] and Poore 

[18] claim that a multiscan window of length two or three is generally enough; any further increase 

in the window length achieves only marginal performance improvement. 

Once we define the feasible multiscan joint events, the next step is to compute the probability 

weights for these events. The heart of the algorithm is finding these probability weights which is 

discussed in detail in the sequel. 



Ill    Problem Formulation 

Assume that there are total N targets with the target set denoted as Tl^r := {1,2, • • •, N}. Assume 

that the dynamics of each target can be modeled as one of the n hypothesized models. The model 

set is denoted as A^„ := {1,2,• • • ,n}. For target r (r G Tk), the event that model i is in effect 

during the sampUng period {tk-i,tk] will be denoted by Ml{r). Although all the targets share a 

common model set, any two targets may be in different motion status from time to time. 

For the j-th. hypothesized model (mode), the state dynamics and measurements of target r 

(r € TAT) are modeled as 

Mr) = Fi_,{r)xk-i{r) + GU{r)4_,{r) (1) 

and 

Zk{r) = hHxk{r))+r4{r) (2) 

where xjfc(r) is the system state of target r at tk and of dimension n^ (assuming all targets share 

a common state space), Zk{r) is the (true) measurement vector (i.e. due to target r) at tk and of 

dimension n^, Fl_^{r) and G^_i(r) are the system matrices when model j is in effect over the 

sampling period {tk-i,tk] for target r and h^ is the nonlinear transformation of Xk{r) to Zk{r) for 

model j. A first-order lineaxized version of (2) is given by 

Zk{r) = Hi{r)xk{r) + 4ir) (3) 

where Hf.{r) is the Jacobian matrix oth^ evaluated at some value of the estimate of state Xk{r) (see 

Sec. IV). The natiure of the system state, the various matrices in (1) and (3), and the measurements 

is specified in more detail in Sec. V. The process noise vl_^{r) and the measurement noise vjl{r) are 

mutually uncorrelated zero-mean white Gaussian processes with covariance matrices Qk_i (same for 

all targets) and R^ (same for all targets), respectively. At the initial time to, the initial conditions 

for the system state of target r under each model j are assumed to be Gaussian random variables 

with the known mean xl{r) and the known covariance Po{r). The probability of target r in model 

j at to, fio{r) = P{Mo(r)}, is also assumed to be known. The switching from model Ml_y^{r) 

to model Ml{r) is governed by a finite-state stationary Markov chain (same for all targets) with 

known transition probabilities pij = P{Ml{r)\Mf._^{r)}. Henceforth, tk will be denoted by k. 

The following notations and definitions are used regarding the measurements. Note that, in 

general, at any time k, some measurements may be due to clutter and some due to the target, i.e. 

there can be more than a single measurement at time k. The measurement set (not yet validated) 

generated at time k is denoted as 

Z,:={.«,.f\...,.r} (4) 



where m is the number of measurements generated at time k. Variable z^' (i = 1, • • •, m) is the 

ith measurement within the set. The validated set of measurements at time k will be denoted by 

Ife, containing m (< m) measurement vectors. The cumulative set of validated measurements up 

to time k is denoted as 

Z'' = {YuY2,---,Yk}. (5) 

With this problem formulation, we make the following (standard) assumptions before presenting 

the detailed algorithm. 

Assumptions: 

(1) It is assumed that the number of targets {N) is known and that for each target track has 

been initiated, and our objective is to maintain the tracks. 

(2) Assuming there are no unresolved measurements (i.e. measurements associated with two or 

more targets simultaneously), any measurement therefore is either associated with a single 

target or caused by clutter. 

(3) Clutter is modeled as independently and identically distributed (i.i.d.) with uniform spatial 

distribution over the entire validation region (across all targets). 

(4) State estimate of individual targets conditioned on the modes, joint events and set of mea- 

surements axe mutually independent and Gaussian distributed i.e. states of the targets are 

not coupled and estimation is carried out independently. 

(5) Multiscan window of length two will be used to compute multiscan joint probabilities. Ex- 

tension to higher lengths is straightforward but tedious. 

The goal is to find the filtered state estimate for target r (r € TAT) 

Xkik{r)=E{xk{r)\Z''} (6) 

and the associated error covariance matrix 

Pk\k{r)=E{\xk{r)-Xkik{r)][xk{r)-Skik{r)]'\Z''} (7) 

where a;jt(r)'denotes the transpose of a;fc(r). 

IV    IMM/Mscan-JPDA Filtering Algorithm 

We now extend the single scan IMM/JPDA filtering algorithm of [8] to apply to the multiscan 

case. As in [14] we will follow a sliding window multiscan approach. The approach of [8], in turn. 



is based on the approaches of [2], [5], [10], [11]. As the IMM/PDAF algorithm is well-explained 

in [5, Sec. 4.5] and [11], the JPDAF algorithm is well-explained in [2, Sec. 9.3] and [5, Sec. 6.2], 

arid the IMM/JPDA filter is given in detail in [8] (where all the underlying assumptions and 

approximations may be found in further detail), we will only briefly outline the basic steps in 

"one cycle" (i.e. processing needed to update for a new set of measurements and a new multiscan 

window) of the IMM/JPDA multiscan filter. We assume that the scan window size is'two. Given 

state estimate at time k — 1 based on data up to time k — 1, in Sec. IV.l we provide first scan steps 

(using data up to time k) and in Sec. IV.2 we provide the second scan steps (using data up to time 

fc + 1). 

Assumed available: Given the state estimate 2^_i|fc_i('') := E{xk:-i{r)\Ml_-^{r),Z''~^}, the 

associated covariance Pk-iik-ii'"') ^^^ *^^ conditional mode probability M^_i(r) = P[Ml_-^(r)|2*^~^] 

at time A; — 1 for each mode j 6 Mn and each target r E TN- 

IV.l    First Scan Steps 

Step 1.1.    Interaction — mixing of the estimate from the previous time (Vj G Mn, 

VreTN): 

predicted mode probability: nl (r) := P{M^(r)|^*~^} = ]^Pij7ii._i(r). (8) 
1=1 

mixing probability:  //'IJ(r) := P{MU{r)\Mi{r),Z''-'} =pij4_,{r)/4-{r). (9) 

mixed estimate:   Ci|fc-iW == E{xk-i{r)\Mi{r),Z>'-'} = J2^Li\k-iir)f^'^Hr). (10) 
t=i 

covariance of the mixed estimate: 

PkUlk-iir) ■■= E{[xk-i{r) - x'l,^,_,ir)][xk-i{r) - x°i,|,_,(r)]'|M^(r),^*-i} 

= EiH-ilk-iir) + [4-ilk-iir) - 4Uk-iirmi-i\k-iir) - Cilfe-iWl'^'^W. (11) 
t=i 

Step 1.2. Predicted state   (Vj € Mn, Vr € TN): 

State prediction:   x^|fc_i(r) := E{xk{r)\Mi{r), Z''-^] = i^i-i^^-ilfc-iW- (12) 

State prediction error covariance: 

^|ik-iW = ^{[^feW - %_i(r)][a:.(r) - £i|,_,(r)]'|M^(r),Z*-i} 

= ^Li^£i|fe-i«i^li + Gi-iQi-iGCi- (13) 
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Using (2) and (12), the mode-conditioned predicted measurement of target r is 

4ir)--=hH4\k-iir-)). (14) 

Using the Unearized version (3), the covariance of the mode-conditioned residual i^ (r) := 4 ~ 

^(r) is given by 

Si{r):=E{4^\ry,^\ry\Mi{r),Z>'-'} = Hi{r)Pi^,_^^^^ (15) 

where Hi{r) is the first order derivative (Jacobian matrix) of h^.) at x^Sk_i{r). Note that (15) 

assumes that z^ originates from the target r. 

Step 1.3. Measurement validation: There are two steps to measurement validation. First 

perform measurement validation for each target r {r € TN) separately. For target r, the validation 

region is taken to be the same for all models, i.e., as the largest of them. Let {\A\ = det(A)) 

jV:=arg|ma^J5^(r)|}. (16) 

Then measurement z^^' ( z = 1,2, • • •, m{k)) is vahdated if and only if 

[4'^ - tirmst{r)]-'[z^^ - tir)] < 7 (17) 

where 7 is an appropriate threshold. The volume of the validation region with the threshold 7 is 

Vk{r):=Cn,l"'/^\St{r)\'/' (18) 

where n^ is the dimension of the measurement and Cn^ is the volume of the unit hypersphere of 

this dimension (ci = 2,C2 = 7r,C3 = 47r/3, etc.). Choice of 7 is discussed in more detail in [5, Sec. 

2.3.2]. After performing the validation for each target separately, we take the validation region for 

the whole target set as the union of separate validation regions of all targets . As mentioned in 

[2] and [5], "... this approach is adopted in order to have the PDF of each false measurement the 

same, i.e., uniformly distributed in the entire validation region". The volume of validation region 

for the whole target set is approximated by 

Vk = J2Vkir). (19) 
r=l 

Step 1.4. State estimation with validated measurements (Vj € Mn, Vr G TN)'- From 

among all the raw measurements at time k, i.e., Zk := {z)^ ,Zf. ',••• ,z^^^ ''}, define the set of 

validated measurement for sensor 1 at time k as 

n:={yi^yr>-,yP»} (20) 

where m,{k) is the total number of validated measurement at time k and 

y« := 4'^ (21) 



where 1 < 7i < /2 < • • • < lm(k) ^ rn{k) when m{k) ^ 0. Note that all targets share a common 

validated measurement set Yk. 

We now consider joint probabilistic data association across targets following [2] and [5]. Define 

the validation matrix 

n = [u}ir]   i = l,---,m(A;),    r = 0,---,N (22) 

where cjir =1 if the measurement i lies in the validation gate of target r, else it is zero. A joint 

association event ©^ is represented by the event matrix 

^{ek) = pir{@k)]    i = l,---Mk),    r = 0,-'-,N (23) 

where 

Wir(©fc) = < , . (24) 
I  0   otherwise. 

A feasible association event is one where a measurement can have only one source 

N 

J2QiriQk) = l   Vi, (25) 
r=0 

and where at most one measurement can originate from a target 

m(fc) 

<Jr(efc) := 53 a)i,(0fc) < 1    forr = !,•••, AT. (26) 
i=0 

The above joint events Gfe are mutually exclusive and exhaustive. 

Following the definitions in [2] and [5], define the binary measurement association indicator 

N 

ri{Qk)--=J^u}ir{@k),    i = l,---,mik), (27) 
r=l 

to indicate whether the validated measurement yj^' is associated with a target in event 6fc. Fur- 

thermore, the number of false (unassociated) measurements in event ©fc is 

m(fc) 

cl>i@k)=E[l-ri{ek)]. (28) 
t=i 

We will limit our discussion to nonparametric JPDA [2],[5]. One can evaluate the likelihood that 

the target r is in model jr BS 

Kir) ■.= p[Yk\Mt{r),Z'-'] = Y,p[Yk\ek,Mt{r),Z>'-']P{Qk\Mt{r),2''-'} 

= EMn|e,,M>(r),2'=-i]P{©fe} (29) 

8 



where, as in [2,(9-31)], the irrelevant conditioning terms have been omitted in the last line of (29) 

and the conditioning on fn{k) is implicit in the event 6fc. The first term in the last line of (29) can 

be written as 

p[Y,\e,,Mt{r),Z''-']=±.... t     t   ■■■t 

xP{Mi^il),-..,Mt-'{r-l),Mt*'{r+ !),■■•,Mi'^{N)\@k,Mt{r),Z''-'}. (30) 

The second term (apriori joint association probabiUties) in the last line of (29) turns out to be ([5, 

Sec. 6.2], 2, Sec. 9.3]) 

P{@k} = ^^mPD)'^^'''Hl-PD)'-''^^''^ (31) 

where PD is the detection probability (assumed to be the same for all targets) and e > 0 is a 

"diffuse" prior (for nonparametric modeling of clutter) whose exact value is irrelevant. We assume 

that the states of the targets (including the modes) conditioned on the past observations are 

mutually independent. Then the first term on the right-side of (30) can be written as 

plYklSk, Mt (1), • • •, Mf-(r - 1), M>(r), M>+'(r + 1), • ■ •,M^^{N),Z"-'] 

fn{k) 

« IlM2/i'Vin(A;),Mf*(ri),2'=-i],        Oir.ik) C Ok, (32) 

where the conditional PDF (probability density function) of the validated measurement y^' given 

its origin and target mode, is given by 

*i'V..(*).Mr.(.),S-^l = |^<f^^"(-'-^^<-»    ';^'<^'' = '- (33) 
I l/Vk iirii&k) =0 

where 

M{x;y,P) := \2nP\-'/^exp[-^ix - y)'p-\x - y)]. (34) 

The second term on the right-side of (30) is given by 

P{Mi\\),...,Mi-'{r-\),Mi^^\r + l),---,Mi^{N)\Qk.Mt{r),Z^-'} 

=    n    P{Mt{s)\ek,Mt{r),Z'-'}=    n    P{Mtis)\Z>'-'}=    JJ   t^'i^)-        (35) 



The probability of the joint association event 9^ given that model j is efTective for target r from 

time fc — 1 through k is 

P{ek\Miir),Z''-\Yk} = ^-p{Yk\ek,Mlir),Z'-']P{Qk\Mi{r),Z''-'} 

= ^p[Yk\ek,Mi{r), Z>'-']P{Qk} =: ^{{r, Ofc) (36) 

where the first term can be calculated from (30) and (32) - (35), the second term from (31), and c 

is a normalization constant such that Y^Q^^ /9^(r, 0jt) = 1. 

The following updates are done for each target r {r £. TN)-  Calculate A-j^{r) (needed in Step 

1.5 later) via (29)-(35). Define the target and mode-conditioned innovations 

Jr   n^      fy'k^-ii'')       fo'-   i = l,---,m(A;)    if   Oirik) C @k ,„. 
ii{r,Qk)~\ . (37) 

I  0 otherwise. 

Using £^|fc_i(r) (from (12)) and its covajiance Pl\k_iir) (from (13)), one computes the state update 

x^l^(r) and its covariance P^/^ir) according to the standard PDAF [2],[5]: 

Kahnangain:   W^ir) = Pi^,_,ir)HJ:ir)[Si{r)]-\ (38) 

State estimate update:   x^^^,^{r) := E{xk{r)\Mi{r),Z''-\Yk} = J2^:\k(^^®k)^i{r,@k)   (39) 

4|fc(^'0fe)==^{^feWl^fc«,2*=-\yfc,0fe} = £i|,_i(r) + W^/(r)^(r,e,).        (40) 

Covaxianceof 4|,(r): P^|,(r) = 5]X^^i(e,)^^(r,0fe) (41) 
e* t=i 

where 

Ai(0fc) = E{a;fe(r)4(r)|Mj^(r),efc,2*=-\yfe}=£i|,(r,efe)x{|,(r,0fe) + P^|,(r,efc),       (42) 

pi  (^ 0^) ^ I H\k-ii^) - Wi{r)Sl{r)Wi'ir)       if   ^..(A;) C 0^ for some 1 < i < m(A;)  ^^^^ 

I ^fc|*;-i('") otherwise, 

^2(0/fc) = -%(r,0A)xi|,(r),   ^3(efc) = -4|fc(r)4'|,(r,0fe),   ^4(0fc) = 2^,|,(r)2i'i,(r-). (44) 

Step 1.5. Update of mode probabilities (Vj G Mn, Vr € TN)- 

4{r) := P[Mi{r)\Z''] = P[M^(r)|^'=-i]p[n|M|(r),Z"-'] = -^4-{r)Ai{r) (45) 

where c is a normalization constant such that I^"=i /ij.(r-) = 1. 
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step 1.6.   Combination of the mode-conditioned estimates   (Vr E TN)' The final state 

estimate update at time A; is given by 

n 

Sk\kir) = J24\hi'-Ki^) (46) 

and its covariance is given by 

IV.2    Second Scan Steps 

Here we update to scan k + 1, given data up to time fe + 1, with a shding scan window of size two, 

scans {k,k + 1}. 

Step 2.1.   Interaction — mixing of the estimate from the previous time (Vj G Mn, 

Vr G TN): 

,ii(r,e,) :=P{Mi{r)\Z',ek} = cWk\Mi{r),Z'-\ek]P{Ml{r)\Z''-\ek} 

= c4{r,ekH-{r). (48) 

n 

predicted mode probability:   4+^ ©fc) == 'P{^fe+l(^)l^^ ©fe} = Y^PHfAir, 6^). (49) 

mixing probability:  fi'\^{r, Sk) := P{M|(r)|M^+i(r), Z\ 0^} = pij4{r, ek)/^li-,{r, SkUbO) 

mixed estimate:   £2j,(r,Gfc) :=E{xk{r)\Mi^,ir),Z'',Qk} = E4|*(^>0fc)A'"'(r,Gfc).     (51) 

covariance of the mixed estimate: 

P,%(r, e,) := E{[xk{r) - ^^^,{r, ek)][x,{r) - x'J^,{r, efc)]'|M^'^i(r), 2:^ 0,} 

= E{^fc|J^.0fc) + [4|fc(^:0;fc) -^Jfjk(^©*)][4|fe(^>0fc) -4{fc(^'®fc)]VI^(r,©fc). (52) 

Step 2.2. Predicted state  (Vj G Mn, Vr G TV): 

State prediction:  ^^^^(r, 0jfc) := E{a;fc+a(r)|M^'+i(r), S^ 0^} = i^'4j,(r, 0^). (53) 

State prediction error covariance: 

PU\ki^,ek) = E{[xk+,{r)-4_^^^,ir,ek)][xk+Ar)-4+M^^^^ 

=np%ST^®k)Fi:+Giq{Gi. (54) 

11 



Using (2) and (53), the mode-conditioned predicted mecisurement of target r is 

^,+i(r,efe):=V(4^i|,(r,efc)). (55) 

Using the linearized version (3), the covariance of the mode-conditioned residual i^!^i(r,6fc) := 

4ti - ^+i(^' ®fe) is given by 

sU{T,Qk) := E{4f,{r,ek)ii%{r,Qk)'\MUi{r),Z',ek} 

= Hi^,{r, efe)P^.,,|,(r, efe)<,(r,0,) + R^, (56) 

where Hl_^^{r,Qk) is the first order derivative (Jacobian matrix) of/!•'(.) at ^k+i\kif,&k)- 

Step 2.3. Measurement validation: For target f, the validation region is taken to be the 

same for all models and ©fc's, i.e., as the largest of them. Let 

OV,efe):=arg{    max    |5^+i(r,0fc)|| • (57) 

Then measurement z^^-^^ ( i = 1,2, • • • ,7n{k + 1)) is validated if and only if 

[41i-^;i(^>0fc)]'[5^;i(r,e,)]-H41i-^fc;i(^e,)]<7 (58) 

where 7 is an appropriate threshold. The volume of the validation region with the threshold 7 is 

Vk+i{r):=Cn^r^/'\St^,ir,ek)\'^' (59) 

where n^ is the dimension of the measurement and Cn^ is the volume of the unit hypersphere of 

this dimension. The volume of validation region for the whole target set is approximated by 

N 

Step 2.4. State estimation with validated measurements (Vj € Mn, Vr 6 TN)- From 

among all the raw measurements at time fc -|-1, i.e., Z^+i := {^[^.1, z^.^^, • • •, z^[ ^ }> define the 

set of validated measurement for sensor 1 at time /;;-(-1 as 

n+.:={!/i'i,«S.,-,yi:r"'} (61) 

where fn{k + 1) is the total number of validated measurement at time A; -I-1. and 

y£li==^ (62) 

where 1 < Zi < Z2 < • • ■ < ^m(Jfc+i) < "^(^ +1) when m{k + 1) ^ 0. Note that all targets share a 

common validated measurement set Yk+i- 

12 



We now consider joint probabilistic data association across targets as in Sec. IV. 1. Define the 

validation matrix 

Ct = [ojir]    i = l,---,m(A; + l),    r = 0,---,N (63) 

where Wjr =1 if the measurement i hes in the validation gate of target r, else it is zero. A joint 

association event @k+i is represented by the event matrix 

n{ek+i) = [Qir{@k+i)]   i = l,---Mk + ^),    r = 0,---,N (64) 

where 

-  rn     ^     h   '^   9ir{k +1) C Sk+i .   ^ 
OJir(Qk+l) = < (65) 

I  0   otherwise. 

A feasible association event is one where a measurement can have only one source 

N 

J]a)i^(efe+i) = l    Vi, (66) 
r=0 

and where at most one measurement can originate from a target 

m(fc+l) 

Sr{ek+i):=    J2   Sir(efc+i)<l    forr = l,---,Ar. (67) 
1=0 

The above joint events @k+i are mutually exclusive and exhaustive. 

As in Sec. IV. 1, define the binary measurement association indicator 

N 

rii@k+i)-=J2^ir{Qk+i),    i = l,---,rn{k + l), (68) 
r=l 

to indicate whether the validated measiurement Vk^i is associated with a target in event @k-\-i- 

Furthermore, the number of false (unassociated) measurements in event 6^.4.1 is 

m(fc+l) 

<l>{@k+i)=   E [i-niek+i)]. (69) 
t=l 

We will limit our discussion to nonparametric JPDA [2],[5]. One can evaluate the likeHhood that 

the target r is in model > as 

Aii(r):=p[n+i|M>i(r),.2'=] 

= E E p[n+i|efc,e,+i,M>i(r),2*]p{efe,efe+i|M> 1(7-),^'=} 

= T,I1 P[yk+i\Qk,ek+i,Mt^,{r),Z^]P{Qk+i}P{ek\Mi:^,{r),Z>'}. (70) 
0fc ©*+l 
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The first term in the last hne of (70) can be written as 

n n 

jl=l jr-l=lir+l=l jAr = l 

p[n+i|0,, e^+i, M^Vi(i)' • • •' ^fc' (^ -1). ^A;I(^)> ^tY (r +1). • • •. ^^+i(^), 2^"] 

xP{Mj?Vi(l), • • •,Mf-(r - 1),M^;Y (r + 1), • • •, M^^i(iV)|e,,e,+i, M> ,(r),2:*}. (71) 

The second term (apriori joint association probabilities) in the last line of (70) turns out to be ([5, 

Sec. 6.2], 2, Sec. 9.3]) 

P{@k^i} = ^®^r!'; l[{Po)''^^^^^Hl - PD)^-^'(^-^') . (72) 
m{K +1)1 ^_^ 

where PD is the detection probability (assumed to be the same for all targets) and e > 0 is a 

"diffuse" prior (for nonpaxametric modeling of clutter) whose exact value is irrelevant. The third 

term in the last line of (70) is given by 

P{Qk\Mt+,ir),Z''} = c'P{Mt+,{r)\Qk,Z''}P{ek\Z>'} = ctii^-,ir,ek)P{Qk}p[Yk\ek,Z''-'] (73) 

where 

p[nie,,z'=-i] = 5:p[nie,,M|(r),^'=-Vrw- (74) 
j 

We assume that the states of the targets (including the modes) conditioned on the past observations 

are mutually independent. Then the first term on the right-side of (71) can be written as 

p[n+i|efc,efc+i,M^!,,(i),..-,M;^;Y(^-i)>^i;iW,M>^.Y 

m(A;+l) 

yii' 
1=1 

n   p[yZi\Oir,ik + i),®k,Mi'^,{ri),Z%       eir,{k + l)cek+u (75) 

where the conditional PDF of the validated measurement y^^i given its origin and target mode, is 

given by 

The second term on the right-side of (71) is given by 

P{MiX,{l), • • •, M^;V(^ - 1). MtY(^ + 1)> ■ • •, Mil,{N)\e,, Gfe+i, M^;i(r), Z'} 

=    n   P{Mt+,{s)\^k+u@k,Mi:^,{r),Z''}=    H    P{Mi'^,{s)\Z\ek} 
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= n 4^1 («.©*)• (77) 

The probability of the joint association events 0fc+i and 0^ given that model j is effective for 

target r from time k through A; + 1 is 

=: 4+,{r,ek+uek) (78) 

v/here the first term can be calculated from (71) and (75) - (77), the second term from (72), the third 

term from (73), and c is a normalization constant such that Z)efc+i Se*, ^k+ii''"^ ©ifc+i) ©fc) = 1- 

The following updates are done for each target r (r € TN)- Calculate ^j^^iir) (needed in Step 

2.5 later) via (70)-(77). Define the target and mode-conditioned innovations 

{*■ «/,^,(r,e,+i,e,):=<( ^^-^^   ^fc+i(^'®^)    fo'^ i = i,---,m(fe-fi) if M^ + i)ce,+i ^^g^ 
" otherwise. 

Using 2^^.i|fc(r, ©k) (from (53)) and its covariance Pl^^^ir, @k) (from (54)), one computes the state 

update ^4i|fc+i(»') and its covariance Pl+iik+ii''^) ^ follows. 

Kalman gain:  wl^,{r,6,) = Pi^,^,{r, ek)HJ:^i{r, ek)[Sl^,{r, 6^)]"^ (80) 

State estimate update:   2^+i|fc+i(»') := E{xk+iir)\Mi_^_^{r),Z^,Ifc+i} 

= EE^fc+i|ifc+i(^'0fc+i'0'fc)'Sfc+i(^'0fc+i.0fc) (81) 

4+i|ifc+i(^'0fe+i,©fc) = 2i+i|fe(r-,e;,) -t-w^^.i(r,eA)i^+i(r,efe+i,ejfc).     (82) 

4 

Covariance of 4+i|it+i(0 = ^fc+i|jb+i(^) = E E E^^(©Jfc+i' 0*)/Sfc+i(^> ©fe+i, ©fc)     (83) 

where 

yli(0fc+i, e^t) = i5 {x,+i(r)xife+i(r)|M^'+i(r), 0fc+i, Gfc, 2:^n+i} 

= ^+i|fc+i('''®*+i'0fc)+-^+i|fc+i(^'©fc+i'0fe). (84) 

^fc+i|fc+i(^'©fc+i'0fe) 

i^+a|,(r,0>fc)-W/+i(r,0;k)5^^i(r,0fc)W^j^;i(r,0fe)     if ^^.(A; + 1) C 0fc+i, \<i<m{k^\) 

-P;t+i| A; ('''©*) otherwise, 
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^2(efc+i,ejfc) = -x^^iifc^i(r,0fc+i,efc)4Vi|fe+iW> (86) 

A3{ek+i,@k) =-xi+i\k+ii^)^k+i\k+i(^^®k+u&k), (87) 

^4(efc+i,Gfc) = 4+,|,^i(r)4;,|,^i(r). (88) 

Step 2.5. Update of mode probabilities (Vj € Mn, Vr 6 TN)- 

Mi+i(r) := P[Mi^,{r)\Z''-^'] = P[M^-^i(r)|2'=]p[n+i|M^^i(r),2''] = i/ii;i(r)Ai+i(r)  (89) 

where c is a normalization constant such that Y^]-i iJ'^^i {r) = 1 and 

4;i(o=i:4;i(^'®fc)^{©*M^^i0fe'^*"']- (90) 

Step 2.6.   Combination of the mode-conditioned estimates   (Vr € TN)' The final state 

estimate update at time fc + 1 is given by 

n 

£fc+iifc+i(r) = ]C^fc+iifc+i(^K+i('') (91) 
i=i 

and its covariance is given by 

n 

(r) 

= E {^fc+ilfc+i(^) + [^fc+i|fc+i(^) - 2fc+i|fc+i(^)][4+i|fc+i('') - ^fe+i|fc+i(^)]'}/^fc+i(^)-     (92) 

V    Simulation Example 

We now consider tracking three maneuvering targets in clutter. We carry out state estimation for 

each target using IMM multiscan JPDA with a scan window size of two and compare our results 

with single scan IMM/JPDA algorithm of [8]. 

The True Trajectories: Target 1 starts at location [10500 1740 40] in Cartesian coordinates 

in meters. The initial velocity is [-140 299.9 0] in m/s. Target stays at constant altitude with a 

constant speed of 331 m/s. Its trajectory is a straight line with constant velocity between 0 and 

15 sec, a coordinated turn of-0.32 rad/s with a constant acceleration of 109 m/s^ between 15 and 

25 s, and a straight Une with a constant velocity between 25 and 35 s. Target 2 starts at location 

[9800 1960 40] in Cartesian coordinates in meters. The initial velocity is [0 299 0] in m/s. The 

target stays at a constant altitude with a constant speed of 299 m/s. Its trajectory is a straight 

line with constant velocity between 0 and 15 sec, a coordinated turn of 0.32 rad/s with a constant 

acceleration of 94 m/s^ between 15 and 25 s, and a straight line with a constant velocity between 

25 and 35 s. Target 3 starts at location [9200 1740 40] in Cartesian coordinates in meters.  The 
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initial velocity is [0 299 0] in m/s. The target stays at a constant altitude with a constant speed of 

299 m/s. It's trajectory is a straight line with a constant velocity between 0 and 35 sec. 

The TEurget Motion Models: The motion models are identical for all three targets. In each 

mode target dynamics axe modeled in cartesian coordinates as Xk = Fxk-i + Gvk-i where state 

of the target is position, velocity and acceleration in each of the three Cartesian coordinates {x, y 

and z). Thus Xk is of dimension 9 {nx=9). Three models are considered in the following discussion. 

The system matrices F and G are defined as 

Gb    0      0 

and   G=      0    Gb    0 

0     0    Gb 

Model I: nearly constant velocity model with zero mean perturbation in acceleration. 

Fb 0     0 " 

0 Fb    0 

0 0    Fb 

F.i 

1 T   0 ' 

0 1    0 

0 0   0 

and Gl = 
2 

T 

0 

where T is the sampling period. The standard deviation of the process noise of M^ is 5m/s^. 

• Model 2: Wiener process acceleration (nearly constant acceleration motion) 

TP"^ — 
^b - 

1 T 

0 1 

0   0 

r2 ■ ■    rj.2 

2 2 

T and Gl = T 

1 1 

The standard deviation of the process noise of M^ is 7.5m/s^. 

• Model 3: Wiener process acceleration (model with large acceleration increments, for the onset 

and termination of maneuvers). Here F^ = F^ and Gf = Gl- The standard deviation of the 

process noise of M^ is 40m/s'^. 

The initial model probabilities for three targets are identical: /ij = 0.8, fj,Q = 0.1 and /i§ = 0.1. The 

mode switching probability matrix for three taxgets is also identical and is given by 

0.8   0.1   0.1 

0.1   0.8   0.1 

^ 0.1   0.1   0.8 

The Sensor: A single sensor (radar) is used to obtain the measurements. The measurements 

are range, and azimuth and elevation angles for the radar). The range, azimuth and elevation 

transformations, respectively, are given by 

r = (x2+y2 + ^2)i/2^    a = tan-i(y/a;),    e = tan-^[^/(a;2 + y2)i/2j 

Pll Pl2 Pl3 

P21 P22 P23 = 

P31 P32 P33 
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The measurement noise it;^ is assumed to be zero-mean white Gaussian with known covariance 

matrix R — diag[400m^, 49mrad^, 4mrad'^]. The sensor is assumed to be located at the origin of 

the coordinate system. The sampling interval was T = Is and it was assumed that the probability 

of detection PD = 0.997. 

The Clutter:     For generating false measurements in simulations, the clutter was assumed to 

be Poisson distributed with expected number of A = 0.1/m rad^.  These statistics were used for 

generating the clutter in all simulations.  However, a nonparametric clutter model was used for 

implementing all the algorithms for target tracking. 

Other Parameters:   The gates for setting up the validation regions for the sensor were based on 

the threshold 7 = 16. With the measurement vector of dimension 3, this leads to a gate probability 

PG = 0.9989 (see p. 96 of [5]). 

Simulation Results: The results were obtained from 30 Monte Carlo runs. Fig. 1 shows the 

true trajectories of the three targets and the distances among targets as a function of time. Fig. 2 

shows the RMSE (root mean-square error) for the filtered position estimates for the three targets 

as a function of time. It is seen from Fig. 2 that the multiscan approach does provide a significant 

improvement over the single scan approach. 

VI Conclusions 

We investigated the problem of tracking multiple maneuvering targets in the presence of clutter 

using switching multiple target motion models. A novel suboptimal filtering algorithm was de- 

veloped by applying the basic interacting multiple model (IMM) approach and multiscan joint 

probability data association (JPDA) technique. Past work (see [14]) on this problem is restricted 

to non-maneuvering targets. 

The algorithm was illustrated via a simulation example involving tracking of three maneuvering 

targets and a multiscan data window of length two. The simulation example shows a significant 

improvement in target position estimate by the proposed IMM multiscan JPDA (with a scan window 

size of two) compared to the results of the single scan IMM/JPDA algorithm of [8]. 
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